
Testing for Weak Instruments in Two Sample Summary Data

Multivariable Mendelian Randomisation

Supplementary Material

Eleanor Sanderson1,2, Wes Spiller1,2 and Jack Bowden1,3

February 2021

1 Equivalence of FTS and FSW

Here we show that under the assumption that the instruments are uncorrelated the two sample

conditional F-statistic FTS in equation (7) in the main text is equivalent to the one sample con-

ditional F-statistic FSW . The individual level conditional F-statistic derived by Sanderson and

Windmeijer (2016), FSW , has been shown elsewhere to be an F-test version of the Basmann stat-

istic for overidentification1,2,3,4. Here we show that FTS is the two-sample equivalent of the same

Basmann statistic and therefore it follows that FTS is equivalent to FSW , the equivalent test for

individual level data. This equivalence implies that the Stock-Yogo critical values for weak instru-

ments used to test for weak instruments in individual level data are also the appropriate values

to compare FTS to to identify weak instruments in two sample Mendelian randomisation.5,6,1 Al-

though the effect of any particular SNP on different exposures in the model may be correlated

we assume throughout that the SNPs themselves are independent of each other. This is not an

unreasonable assumption in the context of two-sample MVMR where results from Genome-wide

Association Studies are used for each sample. In this context the SNPs used for the analysis are

pruned to remove correlated SNPs as standard procedure ensuring that the instruments used in

the analysis are independent.

The estimation considered, in the one sample setting, is;

y = Xβ + u

X = ZΠ + V

Where X is a matrix of K exposures and Z is a matrix of L instruments, K ≤ L. β is a vector of

effects of X on y, Π is a vector of effects of Z on X and u and V are error terms. We can divide

the exposures into one of interest and the others by partitioning X = [X1 X−1], V = [v1 V−1],
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Π = [π1 Π−1]. The first stage individual estimation can then be written as;

X1 = Zπ1 + v1

X−1 = ZΠ−1 + V−1

As described in the main text the model considered to test the conditional strength of the instru-

ments to predict an exposure is an IV estimation with the exposure of interest as the dependent

variable and all other exposures included as exposures predicted by the instruments. In the one

sample setting this can be written as;

X1 = δ1X−1 + ε1

Xm =
L∑

j=1

πmjGj + εm, m = 2, ...,K

where X1 is the exposure of interest, X−1 is a set of all other exposures in the model, δ is a vector

of effects of X−1 on X1 and ε1 and εm are random error terms. The Basmann statistic to test for

overidentification in this model is then given by;

B =
ε̂PZ ε̂(
ζ̂ ′ζ̂
)
/n

=
(x1 −X−1δ̂)PZ(X1 −X−1δ̂)(

ζ̂ ′ζ̂
)
/n

As ε̂ = X1 − X−1δ̂, where δ̂ is a robust IV estimator of δ and ζ is the adjusted error term;

ζ = v̂1 − V̂−1δ̂. Using; PZ = Z(Z ′Z)−1Z ′ = Z(Z ′Z)−1Z ′Z(Z ′Z)−1Z ′, π̂1 = (Z ′Z)−1Z ′X1 and

Π̂−1 = (Z ′Z)−1Z ′X−1,

(Z ′Z)−1Z ′(X1 −X−1δ̂) = (Z ′Z)−1Z ′X1 − (Z ′Z)−1Z ′X−1δ̂

= π̂1 − Π̂−1δ̂

the Basmann statistic can therefore be written as;

B =
(X1 −X−1δ̂)

′Z(Z ′Z)−1Z ′Z(Z ′Z)−1Z ′(X1 −X−1δ̂)(
ζ̂ ′ζ̂
)
/n

=
(π̂1 − Π̂−1δ̂)(Z

′Z)(π̂1 − Π̂−1δ̂)(
ζ̂ ′ζ̂
)
/n

.

As the instruments are independent by construction Z ′Z is a diagonal matrix with Z ′jZj as the j’th
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diagonal element and 0’s on the off diagonals the numerator of this expression can be written as;

(π̂1 − Π̂−1δ̂)(Z
′Z)(π̂1 − Π̂−1δ̂) =

L∑
j=1

Z ′jZj

(
π̂1,j − Π̂−1,j δ̂

)2
.

Now looking at the denominator; as ζ̂ = (v̂1 − V̂−1δ̂) this can be written as;

ζ̂ ′ζ̂ = v̂′1v̂1 − 2δ̂V̂ ′−1v̂1 + δ̂′V̂ ′−1V̂−1δ̂

Using the definitions given in equation 3 we can write;

v̂′1v̂1 = nZ ′Σ1Z

v̂′1V̂−1 = nZ ′Σ12Z

V̂ ′−1V̂−1 = nZ ′Σ2Z

Where Σ2
1, Σ12 and Σ2 are variance-covariance matrices for the error terms in the estimate effect

of the SNPs on the exposures. As the SNPs are independent from each other these matrices are

all diagonal or block diagonal matrices with zeros on the off-diagonals. The expressions above can

therefore be written as;

v̂′1v̂1 = nZ ′Σ1Z = n
L∑

j=1

Z ′jZjσ
2
1,j

v̂′1V̂−1 = nZ ′Σ12Z = n

L∑
j=1

Z ′jZjΣ12,j

V̂ ′−1V̂−1 = nZ ′σ22Z = n
L∑

j=1

Z ′jZjΣ2,j

Where Zj is the j′th element of Z, σ1,j is the j′th diagonal element of Σ1, Σ12,j is the j′th block

diagonal element of Σ12 and Σ2,j is the j′th block diagonal element of Σ2. Substituting these results

back into ζ̂ ′ζ̂ gives;

ζ̂ ′ζ̂ = v̂′1v̂1 − 2δ̂V̂ ′−1v̂1 + δ̂′V̂ ′−1V̂2δ̂

= n

 L∑
j=1

Z ′jZjσ
2
1,j − 2

L∑
j=1

Z ′jZjδ
′Σ12,j +

L∑
j=1

Z ′jZj δ̂
′Σ2,j δ̂


= n

L∑
j=1

Z ′jZj

(
σ21,j − 2δ̂Σ12,j + δ̂Σ2,j δ̂

)

= n

L∑
j=1

Z ′jZjσ
2
xk,j
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The expression for variance given in section 2 of the main paper can be re-written as;

σ2xk,j
=
(
σ21,j − 2δ̂Σ12,j + δ̂Σ2

2,j δ̂
)

Therefore;

ζ̂ ′ζ̂ = n
L∑

j=1

Z ′jZj

(
σ21,j − 2δ̂Σ12,j + δ̂Σ2,j δ̂

)

= n

L∑
j=1

Z ′jZjσ
2
xk,j

Substituting the results obtained for the numerator and denominator into the Basmann statistic

gives;

B =

∑L
j=1 Z

′
jZj

(
π̂1,j − Π̂2,j δ̂

)2(
n
∑L

j=1 Z
′
jZjσ2x1,j

)
/n

=
L∑

j=1

Z ′jZj

(
π̂1,j − Π̂2,j δ̂

)2
Z ′jZjσ2x1,j

=

L∑
j=1

(
π̂1,j − Π̂2,j δ̂

)2
σ2x1,j

= Qxk

As the instruments are independent from each other. Therefore Qxk
is the two-sample equivalent

of the Basmann statistic when the instruments are uncorrelated and consequently FTS is equivalent

to FSW .

Fig.S1 below gives the distribution of the individual conditional F-statistic and the two-sample

conditional F-statistic FTS for models with 25 and 100 SNPs included as instruments. The simu-

lations were generated from a model with two exposures, both of which are strongly individually

predicted but jointly weakly predicted by the set of SNPs. That is they had large individual F

statistics but small FTS statistics of 10. The total bias in the two MVMR estimates is therefore

approximately 10% of the bias in the observational association. Results are given for one exposure

only. This figure supports the formal equivalence result given above.
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Figure S1: Density of FSW and FTS
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2 Additional Simulation Results

Supplementary Table S1 gives simulation results for a model with 2 exposures and 200 SNPs as

instruments. The model in this simulation is equivalent to the model used for the results given in

Table 2 except for the change that here the SNPs have no pleiotropic effect on the outcome and so

there is no extra heterogeneity in the model. These results show that β̂Q and β̂Q,het are equivalent

when there is no heterogeneity and β̂Q,het has only a very modest increase in the standard error.

Supplementary Table S2 gives results for the model given in Table 2 with a heterogeneity

pleiotropic effect of the SNPs on the outcome but with strong instruments, with and without a

correlation between the exposures. These results show that when the instruments are strong all

the methods of estimation work well however β̂Q is biased by the presence of heterogeneity. These

results illustrate that although β̂Q is robust to weak instruments it is biased by heterogenetiy due

to pleiotropy. The results without covariance between the exposures show that the estimation of

FTS and β̂Q are not biased by excluding the covariance between the exposures when that covariance

is zero.
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Table S1: Simulation results for models with no
heterogeneity: 2 exposures, 200 SNPs

Weak instruments Conditionally
weak instruments

x1 x2 x1 x2
Individual level estimation

β̂OLS 1.09 -0.053 0.77 -0.48
(0.005) (0.004) (0.005) (0.005)

β̂IV 0.592 -0.328 0.530 -0.321
(0.026) (0.026) (0.015) (0.011)

F 8.81 8.82 1600.02 3106.6
(0.655) (0.633) (98.10) (190.71)

FIV 3.39 3.39 9.70 9.73
(0.356) (0.350) (0.92) (0.93)

Two-sample estimation with covariances

β̂IV W 0.356 -0.171 0.448 -0.264
(0.041) (0.042) (0.027) (0.019)

β̂Q 0.503 -0.302 0.501 -0.301
(0.062) (0.062) (0.030) (0.022)

β̂Q,het 0.504 -0.304 0.501 -0.301
(0.066) (0.063) (0.031) (0.022)

FTS 3.34 3.35 9.09 9.12
(0.343) (0.343) (0.804) (0.808)

Two-sample estimation without covariances

β̂IV W 0.356 -0.171 0.448 -0.264
(0.041) (0.042) (0.027) (0.019)

β̂Q 0.514 -0.314 0.741 -0.474
(0.064) (0.064) (0.045) (0.032)

β̂Q,het 0.517 -0.318 -88.15 63.54
(0.068) (0.069) 5267.32 3782.18

FTS 3.16 3.17 0.45 0.45
(0.332) (0.327) (0.049) (0.049)

β1 = 0.5, β2 = −0.3
4,000 repetitions, 20,000 observations per repetition
Covariances estimated from the correlation between
x1 and x2
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Table S2: Simulation results for models with strong
instruments: 2 exposures, 200 SNPs

Correlation No correlation
between exposures between exposures
x1 x2 x1 x2

Individual level estimation

β̂OLS 0.52 -0.315 0.54 -0.28
(0.028) (0.028) (0.005) (0.039)

β̂IV 0.497 -0.304 0.500 -0.298
(0.028) (0.028) (0.004) (0.042)

F 3120.7 3142.6 1318.6 1347.5
(152.6) (212.2) (145.3) (142.5)

FIV 873.6 875.6 1318.5 1347.4
(82.79) (87.58) (145.5) (142.5)

Two-sample estimation with covariances

β̂IV W 0.494 -0.303 0.495 -0.297
(0.028) (0.029) (0.009) (0.043)

β̂Q 0.664 -0.414 0.619 -0.371
(0.040) (0.044) (0.018) (0.055)

β̂Q,het 0.497 -0.305 0.500 -0.300
(0.029) (0.029) (0.009) (0.043)

FTS 91.26 91.30 95.4 95.6
(1.33) (1.34) (1.22) (1.22)

Two-sample estimation without covariances

β̂IV W 0.494 -0.303 0.495 -0.297
(0.028) (0.029) (0.009) (0.043)

β̂Q 0.838 -0.633 0.619 -0.370
(0.065) (0.065) (0.018) (0.055)

β̂Q,het 0.509 -0.318 0.500 -0.300
(0.029) (0.030) (0.009) (0.043)

FTS 27.45 27.46 95.4 95.6
(2.86) (2.86) (1.22) (1.22)

β1 = 0.5, β2 = −0.3
4,000 repetitions, 20,000 observations per repetition
Covariances estimated from the correlation between x1
and x2

Jackknife results

Supplementary Tables S3 - S5 give results for the models with differing numbers of SNPs and

with β̂Q estimated using a jackknife procedure. These results show that β̂Q gives more accurate

and precise results as the sample size increases. They also show that the jackknife procedure for

estimating the standard error of β̂Q gives estimates of the standard error that are comparable to

the standard deviation of the effect estimate obtained from the simulations. These standard errors

are however slightly higher than the standard deviation of the effect estimate obtained from the
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simulations suggesting that these standard errors will give slightly larger confidence intervals for

the effect estimate, resulting in a conservative approach to hypothesis testing using these standard

errors.

Table S3: Simulation results for a model with 2 exposures and 50
SNPs

Weak instruments Conditionally
weak instruments

x1 x2 x1 x2
Individual level estimation

β̂OLS 1.13 -1.68 0.811 -0.47
(0.017) (0.017) (0.025) (0.021)

β̂IV 0.71 -0.54 0.630 -0.403
(1.19) (1.17) (0.710) (0.500)

F 8.78 9.02 1643.7 3208.9
(1.38) (1.26) (203.1) (378.3)

FIV 3.44 3.48 9.03 9.05
(0.725) (0.737) (1.90) (1.91)

Two-sample estimation with covariances

β̂IV W 0.484 -0.387 0.557 -0.351
(1.22) (1.18) (0.737) (0.520)

β̂Q −1.47 × 104 1.46 × 104 2.26 × 105 −1.61 × 105

(1.73 × 105) (1.56 × 105) (1.39 × 106) (9.92 × 105)

β̂Q,het 0.741 -0.641 0.610 -0.389
(1.82) (1.75) (0.797) (0.563)

FTS 3.49 3.53 9.09 9.12
(0.735) (0.747) (0.804) (0.808)

Jackknife results

β̂Q,het 0.741 -0.642 0.609 -0.388
(1.70) (1.67) (0.700) (0.500)

β1 = 0.5, β2 = −0.3
1,000 repetitions, 20,000 observations per repetition
Covariances estimated from the correlation between x1 and x2
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Table S4: Simulation results for a model with 2 exposures and 100
SNPs

Weak instruments Conditionally
weak instruments

x1 x2 x1 x2
Individual level estimation

β̂OLS 1.12 -0.026 0.789 -0.478
(0.023) (0.024) (0.018) (0.017)

β̂IV 0.439 -0.173 0.481 -0.289
(0.687) (0.675) (0.367) (0.262)

F 8.89 8.90 1627.9 3165.9
(0.796) (0.994) (161.6) (315.7)

FIV 3.38 3.38 9.77 9.80
(0.494) (0.494) (1.54) (1.55)

Two-sample estimation with covariances

β̂IV W 0.207 -0.023 0.404 -0.235
(0.700) (0.693) (0.380) (0.272)

β̂Q −2.74 × 103 1.72 × 103 −2.40 × 105 1.74 × 105

(1.34 × 105) (1.25 × 105) (1.79 × 106) (1.28 × 106)

β̂Q,het 0.283 -0.008 0.447 -0.266
(1.001) (0.983) (0.413) (0.295)

FTS 3.35 3.34 9.48 9.51
(0.486) (0.487) (1.44) (1.44)

Jackknife results

β̂Q,het 0.282 -0.008 0.447 -0.266
(1.19) (1.20) (0.495) (0.355)

β1 = 0.5, β2 = −0.3
1,000 repetitions, 20,000 observations per repetition
Covariances estimated from the correlation between x1 and x2

9



Table S5: Simulation results for a model with 2 exposures and 200
SNPs

Weak instruments Conditionally
weak instruments

x1 x2 x1 x2
Individual level estimation

β̂OLS 1.08 -0.062 0.79 -0.48
(0.036) (0.035) (0.026) (0.020)

β̂IV 0.509 -0.386 0.639 -0.391
(0.522) (0.489) (0.234) (0.166)

F 8.74 8.89 1628.5 3161.3
(0.563) (0.623) (93.73) (185.6)

FIV 3.40 3.42 10.1 10.1
(0.357) (0.362) (0.81) (0.81)

Two-sample estimation with covariances

β̂IV W 0.273 -0.234 0.561 -0.336
(0.525) (0.498) (0.238) (0.168)

β̂Q 7.84 × 103 −9.05 × 103 −4.38 × 105 3.14 × 105

(1.03 × 105) (1.15 × 105) (1.90 × 106) (1.36 × 106)

β̂Q,het 0.413 -0.364 0.620 -0.378
(0.740) (0.708) (0.263) (0.187)

FTS 3.34 3.36 9.35 9.37
(0.343) (0.347) (0.698) (0.702)

Jackknife results

β̂Q,het 0.413 -0.364 0.620 -0.378
(0.826) (0.814) (0.363) (0.260)

β1 = 0.5, β2 = −0.3
1,000 repetitions, 20,000 observations per repetition
Covariances estimated from the correlation between x1 and x2

3 Results for application with varying covariances

Supplementary Tables S6 gives the results from Table 10 in the main paper with varying levels of

covariance between the exposures. ρ = low gives the results where the correlation used to calculate

the covariance has been decreased by 75% of the difference between the original covariance and 0.

ρ = high gives the results where the correlation used to calculate the covariance has been increased

by 75% of the difference between the original covariance and 1. These results therefore represent

quite extreme changes in the covariance which will be much larger than the difference which is

likely to occur because the data used to calculate the original correlation was not the same as the

data used to generate the SNP-exposure associations. However, these results show that changing

covariance in this setting shows no difference in the interpretation of the results. However the lower

covariance values give results that are so uncertain they cannot be interpreted.
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Table S6: Weak instrument robust estimates of a range of metabolites on
AMD including one exposure from each subgroup

β̂Q,het ρ = low β̂Q,het ρ = high

Est. Std. Error p-value Est. Std. Error p-value

XS.VLDL.P -5.39 100.16 0.957 -1.276 1.357 0.346
S.VLDL.PL 1.59 26.96 0.952 0.183 0.493 0.712

L.LDL.L 0.137 2.86 0.962 0.412 0.497 0.408
IDL.TG 4.10 73.40 0.957 0.378 1.590 0.812

69 SNPs β̂Q,het gives the estimate obtained by minimisation of Q allowing for bal-
anced pleiotropy.

4 Description of the Avon longitudinal study of Parents and Chil-

dren

Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st

December 1992 were invited to take part in the study. The initial number of pregnancies enrolled

is 14,541 (for these at least one questionnaire has been returned or a Children in Focus clinic had

been attended by 19/07/99). Of these initial pregnancies, there was a total of 14,676 foetuses,

resulting in 14,062 live births and 13,988 children who were alive at 1 year of age.

When the oldest children were approximately 7 years of age, an attempt was made to bolster

the initial sample with eligible cases who had failed to join the study originally. As a result, when

considering variables collected from the age of seven onwards (and potentially abstracted from

obstetric notes) there are data available for more than the 14,541 pregnancies mentioned above.

The number of new pregnancies not in the initial sample (known as Phase I enrolment) that are

currently represented on the built files and reflecting enrolment status at the age of 24 is 913 (456,

262 and 195 recruited during Phases II, III and IV respectively), resulting in an additional 913

children being enrolled. The phases of enrolment are described in more detail in the cohort profile

paper and its update7,8. The total sample size for analyses using any data collected after the age

of seven is therefore 15,454 pregnancies, resulting in 15,589 foetuses. Of these 14,901 were alive at

1 year of age.

A 10% sample of the ALSPAC cohort, known as the Children in Focus (CiF) group, attended

clinics at the University of Bristol at various time intervals between 4 to 61 months of age. The CiF

group were chosen at random from the last 6 months of ALSPAC births (1432 families attended

at least one clinic). Excluded were those mothers who had moved out of the area or were lost to

follow-up, and those partaking in another study of infant development in Avon.

The study website contains details of all the data that is available through a fully

searchable data dictionary and variable search tool” and reference the following webpage:

http://www.bristol.ac.uk/alspac/researchers/our-data/. Ethical approval for the study was ob-

tained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.

Consent for biological samples has been collected in accordance with the Human Tissue Act (2004).
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